Erdöl

Aus Brand-Feuer.de
(Weitergeleitet von Öl)
Zur Navigation springenZur Suche springen
Erdölbrand in Lybien am 16.6.2018 führt zu riesiger Emission
Foto: Pierre Markuse
Tanker verliert Öl in der Nordsee am 04.05.2018
Foto: Pierre Markuse
Erdöltanker beim entladen
Fotos: Rainer Schwarz 0810
Ölhafen Wilhelmshaven
Erdölplattform

Erdöl ist ein in der Erdkruste eingelagerte Fossile Energie, hauptsächlich aus Kohlenwasserstoffen (unter anderen auch Methan) bestehendes lipophiles Stoffgemisch. Rohes Erdöl (Rohöl) stellt mit mehr als 17.000 Bestandteilen eine der komplexesten Mischungen an organischen Stoffen dar, die natürlicherweise auf der Erde vorkommen. V. A. P. Martins dos Santos et al.: „Alkan-Biodegradation mit Alcanivorax borkumensis“, Laborwelt Vol. 7, Nr. 5, S. 33ff, 2006.

Erdöl ist derzeit der wichtigste Rohstoff der modernen Industriegesellschaften, der zur Erzeugung von Kraftstoffen und für die chemische Industrie herausragende wirtschaftliche Bedeutung besitzt.

Farbe und Konsistenz variieren von transparent und dünnflüssig bis tiefschwarz und dickflüssig. Erdöl hat auf Grund der Schwefelverbindungen einen charakteristischen Geruch, der zwischen angenehm und widerlich-abstoßend wechseln kann. Farbe, Konsistenz und Geruch sind sehr stark von der geografischen Herkunft des Erdöls abhängig. Manche Erdölsorten fluoreszieren bei der Bestrahlung mit ultraviolettem Licht.


Geschichte

Gefunden wurde Erdöl schon vor einigen tausend Jahren aufgrund der Tatsache, dass es eine niedrigere Dichte als Salzwasser hat und deshalb in den Hohlräumen der Schieferton-, Sand- und Karbonatsedimente nach oben steigt und unter Umständen an der Erdoberfläche zutage tritt (in Deutschland zum Beispiel bei Hänigsen zwischen Hannover und Braunschweig). Wenn es an undurchlässigem Schieferton oder einer anderen dichten Gesteinsschicht nicht weiter aufsteigen kann und in nicht zu großer Tiefe stecken bleibt, ist es schon durch nicht sehr tiefe Bohrungen aufzufinden.

Bis an die Erdoberfläche hervorquellendes Erdöl, welches durch die Aufnahme von Sauerstoff asphaltartige Stoffe bildete, wurde schon vor 12.000 Jahren im vorderen Orient, vor allem in Mesopotamien, als Bitumen entdeckt. Die Menschen lernten die Eigenschaften dieses Naturprodukts zu nutzen: So erhielt man durch das Vermischen von Erdöl mit Sand, Schilf und anderen Materialien ein Produkt zur Abdichtung von Schiffsplanken.

Von den Babyloniern stammt das Wort „naptu“ (von nabatu=leuchten) für Erdöl, welches in der Bezeichnung „Naphtha“ gegenwärtig noch Bestand hat. Dieser Ausdruck deutet darauf hin, dass schon früh das Erdöl zu Beleuchtungszwecken diente. Die Babylonier waren es auch, die wichtige Straßen und Zufahrten zu Kultstätten mit einer dünnen Asphaltschicht abdeckten. Die Verwendung von Bitumen („Erdpech“) war im babylonischen Reich so allgegenwärtig, dass Hammurabi dem Stoff einige Kapitel in seinem Gesetzeswerk 1875 v. Chr. einräumte, die erste nachweisbare staatliche Regulierung von Erdöl.

Das Wort Petroleum ist römischen Ursprungs: „oleum petrae“, deutsch: Stein- oder Felsöl. Dies geht auf Entdeckungen der Römer in Ägypten zurück, wo sie in einem Gebirgszug am Golf von Sues Erdöl aus dem Gebirge austreten sahen. Man vermutet, dass schon die römische Armee Erdöl als Schmierstoff für Achsen und Räder gebrauchte. Erdöl wurde auch schon früh als Kriegswaffe eingesetzt. Im Byzantinisches Reich wurden bereits im Frühmittelalter mit Erdöl recht modern anmutende Flammenwerfer gebaut, das so genannte „griechische Feuer“, eine besonders im Seekampf fürchterliche Waffe.

Die eigentliche Ausbeutung der Erdöllagerstätten begann aber erst im 19. Jahrhundert. Grund dafür war zunächst die Suche nach einem guten Lampenbrennstoff, denn Tran|Walöl war nur für die Reichen erschwinglich, Talgkerzen rochen unangenehm und Gasflammen gab es nur in wenigen, modernen Häusern. Verschiedene Wissenschaftler entwickelten daraufhin in der Mitte des 19. Jahrhunderts Verfahren zur kommerziellen Nutzung. Der kanadische Arzt und Geologe Abraham Gesner erwarb 1852 ein Patent auf die Herstellung eines relativ sauber brennenden, preisgünstigen Lampenbrennstoffes aus Roherdöl: das Petroleum. 1855 schlug der amerikanische Chemiker Benjamin Silliman vor, Erdöl mit Hilfe von Schwefelsäure zu reinigen, um es als Brennstoff zu verwenden.

Also begann man, größere Erdöllagerstätten zu suchen. Seit mehreren Jahren wusste man bereits, dass bei Bohrungen nach Wasser und Salz gelegentlich Erdöl in die Bohrlöcher einsickerte. Also hatte man die Idee, direkt nach Öl zu bohren. Die ersten Bohrungen wurden 1856 in Dithmarschen von Ludwig Meyn und 1858 bei Wietze in Niedersachsen, nördlich von Hannover durchgeführt. Weltberühmt wurde jedoch die Bohrung nach Öl, die Edwin L. Drake am 27. August 1859 am Oil Creek in Titusville (Pennsylvania), Pennsylvania durchführte. Drake bohrte im Auftrag des amerikanischen Industriellen George H. Bissell und stieß in nur 21 Meter Tiefe auf die erste größere Öllagerstätte. Die erste Erdölförderung im Untertagebau fand 1854 in Bóbrka bei Krosno (Polen) statt.

Erdöl wurde lange Zeit auch für ein Heilmittel gehalten. Während der Ölboom-Jahre Nordamerikas in den 1860er Jahren gab es viele Quacksalber, welche das angebliche Wundermittel gegen allerlei Gebrechen verkauften.

Die älteste Erdölraffinerie entstand 1859, als der Amerikaner Edwin Drake durch Bohrungen große Mengen Öl aus der Erde holte. Die Erdölpreise sanken deutlich und die Raffinerien nahmen in der Anzahl zu. Leuchtöle, besonders Petroleum ermöglichten neue Lichtquellen.

Nach der Einführung elektrischen Lichts war Erdöl zunächst nicht mehr attraktiv, doch bald nach der Entwicklung des Automobils setzte die Familie Rockefeller als Mitbegründer der Standard Oil Company die Verwendung des Erdölprodukts Benzin als Ottokraftstoff durch, statt des von Henry Ford zunächst vorgesehenen Ethanols.

In Saudi-Arabien, einem der inzwischen wichtigsten Ölförderländer, wurde das „Schwarze Gold“ zuerst in der Nähe der Stadt Dammam am 4. März 1938 nach einer Reihe erfolgloser Exploration (Geologie) von der US-Gesellschaft Standard Oil of California entdeckt.

In der Gemeinde Wietze befindet sich heute das Deutsches Erdölmuseum Wietze.


Entstehung

Der biogenen Theorie zur Erdölentstehung nach entsteht Erdöl aus Plankton|Meeresorganismen, die absterben, absinken und dann auf dem Meeresboden von Sedimentgestein bedeckt werden. Durch Absinken der Lockersediment werden diese Organische Chemie Materialien hohem Druck (Physik) und hoher Temperatur ausgesetzt. Unter diesen Bedingungen wandeln sie sich in so genannte Kerogene um, organische Stoffe, die vorwiegend aus Kohlenstoff und Wasserstoff bestehen. Im Verlauf der weiteren Diagenese können die Kerogene bituminös werden. Sedimentgesteine, die Kerogene enthalten, werden als Erdölmuttergestein bezeichnet. Ein Beispiel für ein Erdölmuttergestein mit fein verteilten bituminösen Kerogenen ist Ölschiefer aus dem Lias epsilon (unterer Jura (Geologie)).

Die fein verteilten Kerogene können unter bestimmten Bedingungen, vor allem bei hohen Temperaturen, wandern, da sie leichter als Wasser sind und durch dieses verdrängt werden. Beim Wandern („Migration“ des Erdöls) vereinigen sich die Kerogene zu kompakteren Massen, zu Erdöl. Die Migration verläuft im Großen und Ganzen aufwärts. Gerät das Erdöl unter undurchlässige Erdschichten, die seine weitere Wanderung nach oben und nach den Seiten verhindern (Erdölfallen), reichert es sich dort an und es entsteht so eine Erdöllagerstätte. Eine Erdöllagerstätte besteht also aus einem Speichergestein, dem in seinen Poren befindlichen Erdöl und mehr oder weniger Lagerstättenwasser, das sich, sofern vorhanden, ebenfalls in den Poren des Speichergesteins befindet. Das Lagerstättenwasser enthält oft gelöste Salze. Teilweise entstand unter ähnlichen Bedingungen Erdgas. Oberhalb von Erdöllagerstätten kann sich deshalb eine Kappe aus Erdgas befinden. Oberflächennahe, erdölhaltige sandige Sedimente werden als Erdölsande bezeichnet. Erdöl ist weltweit nicht gleich zusammengesetzt. So sind zum Beispiel in einigen Gebieten mehr Alkane, in anderen mehr Alkene enthalten, auch das Verhältnis von Aliphat zu aromatischen Kohlenwasserstoffen ist verschieden.

Die langsame Neubildung findet auch heute noch statt, ist aber relativ zum Verbrauch unbedeutend.

Einer abiogenetischen Theorie (auch: abiotisch) nach, die weitaus weniger Vertreter (siehe insbesondere Thomas Gold) als die biogenetische Theorie hat, existieren im Inneren der Erde von ihrer Entstehung an große Mengen Kohlenstoffverbindungen, darunter auch viele Kohlenwasserstoffe. Diese Kohlenstoffverbindungen werden wegen ihrer geringen Dichte in Richtung Erdoberfläche aufgepresst. Die abiogenetische Theorie hatte viele Anhänger unter Geologen in der Sowjetunion.


Chemie und Zusammensetzung

Erdöl ist hauptsächlich ein Gemisch vieler Kohlenwasserstoffe. Die am häufigsten vertretenden Kohlenwasserstoffe sind dabei lineare oder verzeigte Alkane (Paraffine), Cycloalkane (Naphthene) und Aromaten. Jedes Erdöl hat je nach Fundort eine spezielle chemische Zusammensetzung, die auch die physikalischen Eigenschaften wie Farbe und Viskosität bestimmt.

Neben den reinen Kohlenwasserstoffen sind noch Kohlenstoffverbindungen, die Heteroatome wie Stickstoff (Amine, Porphyrine), Schwefel (Merkaptane, Thioether) oder Sauerstoff (Alkohole, Chinone) enthalten, Bestandteil des Erdöls. Daneben finden sich Metalle wie Eisen, Kupfer, Vanadium und Nickel.

Der Anteil der reinen Kohlenwasserstoffe variiert erheblich. Der Anteil kann von 97% bis zu nur 50% bei Schwerölen und Bitumen reichen.

Die Zusammensetzung nach Elementen bewegt sich dabei in folgender Bandbreite: | last = Speight | first = James G. | title = The Chemistry and Technology of Petroleum | date = 1999 | publisher = Marcel Dekker | isbn = 0824702174 | pages = S. 215–216 }} </ref>

Kohlenstoff 83–87 %
Wasserstoff 10–14 %
Stickstoff 0,1–2 %
Sauerstoff 0,1–1,5 %
Schwefel 0,5–6 %
Metalle <1000 ppm


Prospektion

Erdölförderung in Norddeutschland.
Foto: Rainer Schwarz

Die gezielte Suche nach Erdöl- und Erdgasvorkommen bezeichnet man als Prospektion (Geologie).

In der Frühzeit der Erdölgewinnung war man auf Anzeichen an der Erdoberfläche angewiesen, die auf Vorkommen von Erdöl schließen ließen. So tritt aus seicht liegenden Lagerstätten ständig Erdöl in geringen Mengen aus. Ein bekanntes Beispiel dafür ist die seit dem 15. Jahrhundert bekannte, aber mittlerweile versiegte St. Quirins-Quelle bei Bad Wiessee am Tegernsee, aus der über Jahrhunderte Erdöl austrat, das vornehmlich als Heilmittel Verwendung fand.

Die Suche tief liegender Ölvorkommen erfolgte früher durch eine eingehende Analyse der geologischen Verhältnisse eines Landstrichs. In der Folge wurden dann an ausgewählten Orten Probebohrungen niedergebracht.

Mit der Zeit wurden aufwändige Prüfungsmethoden entwickelt, die eine Darstellung der Bodenschichtung ermöglichen. Das am weitesten verbreitete Verfahren ist die Reflexionsseismik. Dabei werden an der Erdoberfläche Schwingungen erzeugt, deren an den unterschiedlichen Bodenschichten reflektierte Signale über Geophone empfangen und aufgezeichnet werden. Aus den Laufzeiten und Charakteristiken der reflektierten Signale lassen sich Schichtenprofile errechnen.

Heute wird in Europa in etwa zwei Drittel der Fälle das Vibroseis-Verfahren eingesetzt. Dabei wird mit Gruppen von üblicherweise drei bis fünf Spezialfahrzeugen, welche Schwingungen einer definierten Frequenz über eine Art Rüttelplatte in den Erdboden übertragen, eine Messstrecke abgefahren. Entlang der Messstrecke sind Geophone in Gruppen zum Empfang der reflektierten Signale angeordnet. Das systematische Befahren eines Gebiets mit sich kreuzenden Messstrecken erlaubt die Errechnung eines dreidimensionalen Modells der Bodenschichtung.


Erschließung von Lagerstätten

Befindet sich die Erdöllagerstätte nahe der Erdoberfläche, so kann das Öl im Tagebau gewonnen werden, Beispiel: Ölsand|Athabasca-Erdölsande, Alberta. Zu Beginn der Erdölnutzung wurde es an einigen Orten auch im Tiefbau gewonnen, zum Beispiel bei Wietze, westlich Celle (Niedersachsen, Deutschland). Aus tieferen Lagerstätten wird Erdöl durch Sonden gefördert, die durch Bohrungen bis zur Lagerstätte eingebracht werden. Es existieren auch Bohrinseln, die ein Fördern mitten im Meer ermöglichen, wobei die Bohrplattformen später teilweise durch Förderplattformen ersetzt werden.

Zum Bohren werden Hohlbohrer verwendet, damit das dabei entstehende Bohrklein aus dem Bohrloch zutage transportiert werden kann. Das Bohrwerkzeug besteht aus Stahlrohren, die zu einem immer längeren Rohrgestänge, dem Bohrstrang, aneinandergeschraubt werden können. Am unteren Ende befindet sich das eigentliche Bohrwerkzeug, der so genannte Bohrmeißel mit der darüber angebrachten Schwerstange. Meistens besitzt der Bohrmeißel drei gegeneinander winklig angeordnete, gezähnte Kegelrollen. Solche Meißel werden zum Bohren von weichem und mäßig hartem Gestein eingesetzt. Andere Bauformen haben keine beweglichen Teile, sondern sind zum Bohren härterer Gesteine mit Diamanten, Schneidkeramiken oder Hartmetall besetzt.

Zum Wechseln des Bohrmeißels muss das gesamte Gestänge aus dem bereits gebohrten Bohrloch herausgezogen werden. Die Standzeit eines Bohrmeißels kann in extremen Situationen nur einige wenige Stunden betragen. Eine weitere nicht unübliche Situation ist der Bruch des Bohrmeißels. In diesem Falle wird zunächst versucht, den abgebrochenen Meißel mit einem in die Bohrung eingeführten Greifwerkzeug zu fassen. Gelingt dies nicht, so muss einige Meter oberhalb des abgebrochenen Werkzeuges eine neue Bohrung angesetzt werden, welche die Schadensstelle umgeht.

Meistens wird der gesamte Bohrstrang und damit auch der Bohrmeißel von einer Vorrichtung übertage gedreht (Rotary-Bohrverfahren), und zwar mit etwa 100 Umdrehungen pro Minute im Drehrichtung#Rechtsdrehend|Uhrzeigersinn. Bei früheren Bohranlagen erfolgte das Drehen des Bohrstranges über einen Drehtisch, während neue Anlagen zumeist über einen Top-Drive am Flaschenzug des Bohrturms verfügen.

Der Bohrmeißel hat einen größeren Durchmesser als das Rohrgestänge, so dass um das Gestänge herum ein Hohlraum entsteht (so genannter Ringraum), der zur Verhinderung seines Zusammenbrechens mit einem Stahlrohr ausgekleidet wird („Casing“).

Um das Bohrklein herauszufördern und die beim Bohren entstehende Reibungswärme abzuführen, wird eine Bohrflüssigkeit durch das Bohrrohr eingepresst, die an der Bohrkrone austritt und im Ringraum zusammen mit dem Bohrklein wieder nach oben gedrückt wird. Die Bohrflüssigkeit muss ein hohes spezifisches Gewicht und eine hohe Viskosität aufweisen, damit sie durch das hohle Bohrgestänge eingepresst und durch den Ringraum wieder ausgepresst werden kann und damit das Bohrklein dabei mitgerissen wird. Sie besteht aus Wasser, das unter anderem gelöste Polymere und suspendiertes Baryt-Mehl enthält. Manchmal wird die Bohrspülung auch benutzt, um damit einen Motor direkt über dem Bohrmeißel anzutreiben, so dass nur der Bohrmeißel, nicht aber der gesamte Bohrstrang gedreht wird.

Damit die einzelnen Rohre des Bohrgestänges gehandhabt werden können, wird über dem Bohrloch ein Bohrturm errichtet, in dem sich auch die Vorrichtung zum Drehen des Bohrgestänges mittels Motor befindet.

Wenn die Gegebenheiten es erfordern, kann auch in weiten Bögen gebohrt werden, so dass eine Lagerstätte auch von der Seite aus erschlossen werden kann (siehe: Richtbohren), zum Beispiel bei Lagerstätten unter besiedeltem, schwierigem, zu schützendem oder militärisch genutztem Gelände.

Ist eine Bohrung „fündig“, finden zunächst Produktionstests statt, um die Ergiebigkeit des Vorkommens zu erkunden. In nicht wenigen Fällen zeigt sich nach anfänglich hoher Ergiebigkeit eine rasche Verwässerung, sodass nach wenigen Wochen bis Monaten eine Bohrung aufgegeben werden muss.


Ölpunpen in Twiste.
Foto: Rainer Schwarz

Förderung

In größerer Tiefe steht das Erdöl unter dem Lithostatischer Druck der auflastenden Erdschichten und gegebenenfalls des assoziierten Erdgases und wird nach Anbohren aus dem Bohrloch gepresst, da es leichter als Wasser und das umgebende Gestein ist. Beim ersten Anbohren der Lagerstätte muss deshalb das Austreten des unter Druck stehenden Öls mit einer speziellen Vorrichtung („Preventer“) verhindert werden, die sich am oberen Ende des Bohrgestänges befindet. In der ersten Zeit kann das Öl meistens ohne weitere Maßnahmen durch den Eigendruck in der Lagerstätte gefördert werden (Primär- bzw. Eruptivförderung). Lässt der Lagerstättendruck nach, muss das Öl mit technischen Hilfsmitteln, meist Tiefpumpen, zutage gefördert werden.

Das Bild der meisten Ölfelder wird von Gestängetiefenpumpen, wegen ihres Aussehens auch „Pferdekopfpumpen“ genannt, geprägt. Dabei befindet sich der eigentliche Pumpenmechanismus, ein Kolben mit Rückschlagventilen, in einem eigenen Rohrstrang im Bohrloch nahe der Öl führenden Schicht. Der Kolben wird mittels einer verschraubbaren Stange von einem an der Erdoberfläche befindlichen Pumpenbock in eine kontinuierliche Auf- und Abbwegung versetzt. Der Zyklus beträgt üblicherweise 2,5 bis 12 Hübe pro Minute. Gestängetiefpumpen sind jedoch nur bis Tiefen bis etwas mehr als 2500 m wirtschaftlich einsetzbar, da sonst das Gewicht der zu hebenden Flüssigkeitssäule zu hoch wäre.

Statt eines Pumpkolbens kann auch eine Exzenterschneckenpumpe im Bohrloch angebracht werden, die über eine verschraubbare Stange mit einem Triebkopf an der Erdoberfläche betrieben wird. Bei Bohrungen mit gekrümmten Verlauf kann die Exzenterschneckenpumpe auch über einen direkt an der Pumpe angebrachten Elektromotor angetrieben sein.

Bei Bohrungen mit gekrümmtem Verlauf bietet sich ein hydraulischer Antrieb an. Der eigentliche Pumpenmechanismus – wie bei der Gestängetiefpumpe ein Kolben mit Rückschlagventilen – wird mittels eines direkt über dem Kolben sitzenden Hydraulikzylinder betätigt, der über eine eigene Rohrleitung mit einer an der Erdoberfläche verbundenen Hydraulikpumpe verbunden ist. Das gewonnene Erdöl dient dabei als Betriebsmittel des gesamten Pumpensystems.

Aus tiefer liegenden Ölvorkommen wird häufig mittels Gasliften (vgl. Mammutpumpe) gefördert. Dabei wird das Begleitgas, das bei der Erdölförderung mit an die Oberfläche tritt, abgetrennt, getrocknet und in den Hohlraum zwischen Förderstrang und Casing gepresst. Über Ventile gelangt das Gas vom Ringraum in den Förderstrang. Durch den Effekt der aufsteigenden Gasblasen wird das Öl/Wassergemisch im Förderstrang nach oben getragen – ähnlich wie bei einer Mineralwasserflasche, bei der die Kohlensäure die Flüssigkeit zum Überschäumen bringt.

Der Lagerstättendruck kann durch Einpressen von Wasser oder Erdgas mittels durch Bohrungen eingerichteter Einpresssonden erhöht werden (Sekundärförderung). Die Durchlässigkeit des Speichergesteins kann durch Einpressen von Säuren erhöht werden, wodurch Komponenten des Speichergesteins, zum Beispiel Karbonate, gelöst werden. Im Lauf der Lagerstättenausbeutung steigt der Wasseranteil im Fördergut, später wird in der Regel mehr Wasser als Öl gefördert, wobei die Förderung selbst bei einem Wasseranteil von deutlich mehr als 90 % als rentabel betrachtet wird.

Je nach Lagerstättenausbildung und -druck kann eine primäre Entölung von 5 % (Schweröl) bis 50 % erreicht werden. In Deutschland können im Durchschnitt 18 % des Öls primär gewonnen werden. Sekundäre Förderverfahren ermöglichen die Förderung eines weiteren Teils des Erdöls, das sich in der Lagerstätte befindet („oil in place“). In Deutschland kann durch Anwendung von Sekundärverfahren der Entölungsgrad im Durchschnitt auf 32 % erhöht werden. Der Rest lässt sich durch die beschriebenen Förderverfahren nicht von den Feststoffen des Speichergesteins lösen. Weiteres Öl kann aber durch spezielle Verfahren gewonnen werden (Tertiärförderung). Dazu gehören:

  • Wärmeverfahren: Einpressen von Heißwasser oder Heißdampf („Dampffluten“) oder Verbrennen eines Teils des Erdöls in der Lagerstätte;
  • Einpressen von N2 (Stickstoff);
  • Einpressen von CO2 (Kohlenstoffdioxid), das den Lagerstättendruck erhöht und sich im Öl löst und dadurch dessen Viskosität vermindert („CO2-Fluten“);
  • Einpressen von Leichtbenzin oder Flüssiggas, die ebenfalls die Viskosität des Öls erniedrigen;
  • Einpressen von wässrigen Lösungen Viskosität erhöhender Stoffe (organische Polymere), wodurch das Öl besser von den Feststoffen abgelöst wird („Polymerfluten“);
  • Einpressen von wässrigen Lösungen grenzflächenaktiver Stoffe (Tenside), die sich an den Grenzflächen Öl/Feststoff und Öl / Wasser anreichern und so das Öl vom Feststoff lösen und im Wasser fein zerteilen, emulgieren („Tensidfluten“).

Die Tertiärverfahren werden teilweise auch kombiniert. Ein beträchtlicher Rest des Erdöls kann aber bisher mit keinem Verfahren aus der Lagerstätte gewonnen werden. In Deutschland beträgt die Entölung einer Lagerstätte zumeist unter 50 %, in Einzelfällen bis 60 %. Bei den Vorkommen in der Nordsee mit ihrem Öl geringer Dicht kann man über 70 % des Inhalts gewinnen.

Besondere Schwierigkeiten bereitet die Erdölförderung aus Lagerstätten, die sich unter Gewässern befinden („Off-shore-Gewinnung“). Hier müssen zur Erschließung der Lagerstätte auf dem Gewässergrund stehende oder darüber schwimmende Bohrplattformen eingerichtet werden, von denen aus gebohrt und später gefördert werden kann. Hierbei ist das Richtbohren vorteilhaft, weil dadurch von einer Bohrplattform ein größeres Areal erschlossen werden kann.

Nach Abschluss der Bohrarbeiten kann auch eine reine Förderplattform eingesetzt werden. Beispiel: Thistle Alpha


Bedeutung

Erdöl ist der derzeit wichtigste Rohstoffe der modernen Industriegesellschaften.
Er ist wichtig zur Erzeugung von Elektrizität und als Treibstoff fast aller Verkehrsmittel|Verkehrs- und Transportmittel. Daneben wird Erdöl in der Chemische Industrie zur Herstellung von Kunststoffen und anderer Chemieprodukte vielfach eingesetzt. Aus diesen Gründen wird es auch „schwarzes Gold“ genannt.


Chemische Produkte aus Erdöl

In der Erdölraffinerie wird das Erdöl in seine unterschiedlichen Bestandteile wie Leichtes und Schweres Heizöl, Kerosin sowie Benzin u. a. in Destillationskolonnen aufgespalten. In weiteren Schritten können aus dem Erdöl die verschiedensten Alkane und Alkene erzeugt werden.

In der chemischen Industrie nimmt das Erdöl eine bedeutende Stellung ein. Die meisten chemischen Erzeugnisse lassen sich aus ca. 300 Grundchemikalien aufbauen. Diese Molekülverbindungen werden heute zu ca. 90 % aus Erdöl und Erdgas gewonnen. Zu diesen gehören: Ethen, Propen, Butadien, Benzol, Toluol, o-Xylol, p-Xylol (diese stellen den größten Anteil dar). Aus der weltweiten Fördermenge des Erdöls werden ca. 6–7 % für die chemischen Produktstammbäume verwendet, der weitaus größere Anteil wird einfach in Kraftwerken und Motoren verbrannt. Die Wichtigkeit dieser Erdölerzeugnisse liegt auf der Hand: Gibt es kein Erdöl mehr, müssen diese Grundchemikalien über komplizierte und kostenintensive Verfahren mit hohem Energieverbrauch hergestellt werden. Der chemische Baukasten des Erdöls wird verwendet, um fast jedes chemische Erzeugnis zu produzieren. Dazu gehören Farben und Lacke, Arzneimittel, Wasch- und Reinigungsmittel, um nur einige zu nennen.

                     Erdöl
                       |
               (Erdölraffinerie)
                       |
                       |    --> steigender Siedepunkt -->
  +-----------+--------+-------+------------+-------------+----------------+
  |           |                |            |             |                |
 Methan|Gase---+---Naphtha          Kerosin       Gasöl---+---Vakuumdestillation|Vakuumgasöl     Vakuumdestillation|Vakuumrückstand
        |     |                |            |     |       |                |
        |   Benzin         Flugbenzin    Dieselkraftstoff,  |   Schmieröle     schweres Heizöl,
        |                               leichtes  |    Tenside      Schweröl, Bitumen,
        |                                Heizöl   |                    Koks, Ruß
    (Steamcracken)                                |
        |                                         | 
    Olefine und                               (Cracken)
     Aromaten                                     |
        |                                       Benzin
   (Reaktionen)
        |
     Monomere
        |
 (Polymerisation)
        |
    Kunststoffe


Finanzwirtschaft

Als zentraler Rohstoff ist Erdöl auch Gegenstand der Spekulation (Wirtschaft). Öl und Ölprodukte werden nicht nur unmittelbar am Spotmarkt, sondern oft auch in Form von in Warentermingeschäften (Ölkontrakte) gehandelt. Zwei sehr wichtige Rohölsorten für solche Geschäfte sind Brent (Öl) und West Texas Intermediate. Der Ölpreis beeinflusst häufig auch die Börsenkurse, da viele Branchen Öl als Roh- und/oder als Betriebsstoff einsetzen und daher eine gewisse Abhängigkeit vom Ölpreis besteht oder gesehen wird. Daneben wirkt sich der Ölpreis auch regelmäßig auf die Devisenmärkte aus, da Erdöl noch immer weit überwiegend in US-Dollar gehandelt wird; eine hoher Preis führt in Folge oft auch zu einem höheren Dollarkurs, wobei auf diesen noch eine ganze Reihe anderer Faktoren einwirken (z.B. Tausch der Dollars in andere Währungen durch die Förderländer), sodass dieser Effekt nicht unbedingt auffällig wird. Finanzwirtschaftliche Bedeutung hat, neben dem bereits erwähnten Umtausch in andere Währungen, auch die sonstige Verwendung der Verkaufserlöse für Erdöl durch die Förderländer.


Weltreserven und Bevorratung

Für das Jahr 2004 wurden die bestätigten Weltreserven je nach Quelle auf 1260 Milliarden Barrel (171,7 Milliarden Tonne (Masseneinheit) nach Öldorado 2004 von ExxonMobil) bzw. auf 1148 Milliarden Barrel (156,6 Milliarden Tonne (Masseneinheit) nach BP Statistical Review 2004) berechnet. Das Wissenschaftsmagazin Science ging 2004 sogar von Reserven von insgesamt drei Billionen Barrel aus. Die Reserven, die geortet sind und mit der heute zur Verfügung stehenden Technik wirtschaftlich gewonnen werden können, nahmen in den letzten Jahren trotz der jährlichen Fördermengen jeweils leicht zu und erreichten im Jahre 2004 den höchsten jemals berechneten Stand. Während die Reserven im Naher Osten, Ostasien und Südamerika aufgrund der Erschöpfung von Lagerstätten und unzureichender Prospektion (Geologie) sanken, stiegen sie in Afrika und Europa leicht an. Es wird vorausgesagt, dass die Erdölreserven nur noch 50 Jahre den Weltverbrauch decken können. Die Tatsache, dass ähnliche, nicht eingetretene Vorhersagen bereits in der Vergangenheit getroffen wurden, hat den Begriff Erdölkonstante hervorgebracht. Im Jahre 2003 befanden sich die größten Erdölreserven in Saudi-Arabien (262,7 Milliarden Barrel), im Iran (130,7 Milliarden Barrel) und im Irak (115,0 Milliarden Barrel), darauf folgten die Vereinigte Arabische Emirate, Kuwait und Venezuela (siehe Abschnitt Erdöl/Tabellen und Grafiken#Reserven für eine genaue Tabelle).

Kritiker dieser Angaben weisen allerdings darauf hin, dass die Zahlen häufig aus politischen Gründen verfälscht wurden. Zudem melden viele Länder jährlich dieselben Zahlen, obwohl sie gleichzeitig große Mengen Erdöl fördern; die Zahlen werden also oft nicht angepasst. Darüber hinaus wird nach Schätzungen unabhängiger Experten im ersten Jahrzehnt des 21. Jahrhunderts die als Ölfördermaximum|Peak-Oil bekannte Spitze der Hubbert-Kurve erreicht werden. Das Erreichen dieses 'Ölfördermaximums' ('peak') bedeutet, dass weltweit die Förderung bzw. Produktion von Erdöl nicht mehr erhöht werden kann. Infolge dessen wird der Ölpreis unausweichlich und in hohem Maße steigen, da bei stetig wachsendem Verbrauch das Angebot (Volkswirtschaftslehre) die Nachfrage nicht mehr bedienen kann.

Die Länder der Europäische Union sind verpflichtet, einen 90-Tage-Vorrat als Strategische Ölreserve für Krisenzeiten zu unterhalten. Ein großer Teil der deutschen und ein kleinerer Teil der ausländischen Vorräte liegt in den unterirdischen Kaverne (Bergbau)nanlagen im Zechsteinsalz im Raum Wilhelmshaven, wohin auch das meiste Erdöl nach Deutschland eingeführt wird. In Österreich übernimmt die Erdöl-Lagergesellschaft diese Aufgabe.

Tabelle: Weltweite Ölreserven in Milliarden Barrel

Annahme der Industriedatenbank Studie der Energy Watch Group
OECD 97 112
Russland u.a. 191 154
China 26 27
Südostasien 30 22
Lateinamerika 129 53
Naher Osten 679 362
Afrika 105 125
Welt 1255 854

Bei einem täglichen Verbrauch von 87 Mio. Barrel

Weltförderung

Laut Abdullah S. Jum'ah (CEO von Aramco), Anfang 2008 wurden in der Geschichte der Menschheit rund 1.1. Billionen Barrel Erdöl gefördert. Die meisten Reserven wurden<! in den 1960er Jahren entdeckt. Ab Beginn der 1980er Jahre liegt die jährliche Förderung (2005) bei 30,4 Milliarden Barrel (87 Millionen Barrel pro Tag Verbrauch in 2008 – über der Kapazität (Wirtschaft) der neu entdeckten Reserven, sodass seit dieser Zeit die vorhandenen Reserven abnehmen. Deshalb wird von einigen Experten mit einem Fördermaximum (→ Ölfördermaximum) zwischen 2010 und 2020 gerechnet. Einige befürchten, das Maximum werde noch vor 2010 eintreten oder sei sogar schon eingetreten sei (Kenneth Deffeyes, Colin J. Campbell, Jean Laherrere). Das wirtschaftliche Problem bestünde darin, dass bei Erreichen dieses weltweiten Ölfördermaximum Erdöl immer knapper und teurer würde, weil dann der tägliche Erdölbedarf größer wird als die tägliche Erdölfördermenge. Im Juli 2007 schlägt die Internationale Energieagentur (IEA) Alarm: Diese erwartet in den nächsten 5 Jahren eine Öl- und Gaspreisexplosion, da die Nachfrage getrieben durch Länder wie China und Indien jährlich um 2,2 Prozent steige, die Erdölfördermenge jedoch nicht mehr in diesem Umfang. Es bestünde eine reelle Gefahr für Ölknappheit ab 2010 und eine kommende Ölkrise.

Abdullah S. Jum'ah Er geht davon aus, daß von den vorhandenen flüssigen Ölvorkommen weniger als 10% bereits gefördert wurden und (inklusive nicht konventioneller Reserven) noch mindestens für 100 Jahre Erdöl bei heutigem Verbrauchsraten zur Verfügung stünde.

Hauptförderer von Erdöl waren im Jahr 2003 Saudi-Arabien (496,800 Millionen Tonnen), Russland (420,000 Millionen Tonnen), USA (349,400 Millionen Tonnen), Mexiko (187,800 Millionen Tonnen) und der Iran (181,700 Millionen Tonnen); die gesamte Weltförderung lag bei 3.608,600 Millionen Tonnen (siehe Erdöl/Tabellen und Grafiken#Förderung|1 für eine genaue Tabelle). Die Erdölförderung in Deutschland deckte ursprünglich bis zu 80% des nationalen Bedarfs und hatte historisch eine große Bedeutung, ist aber mittlerweile vergleichsweise geringfügig.


Weltverbrauch

Der tägliche Verbrauch weltweit liegt im Jahr 2008 bei etwa 87 Millionen Barrel. USA (20,1 Millionen Barrel), Volksrepublik China (6 Millionen Barrel), Japan (5,5 Millionen Barrel) und Deutschland (2,7 Millionen Barrel) waren im Jahr 2003 Hauptverbraucher des Erdöls (siehe Erdöl/Tabellen und Grafiken#Verbrauch|1 für eine genaue Tabelle). Der Weltverbrauch steigt derzeit um 2 % pro Jahr an.

Der jährliche Pro-Kopf-Verbrauch liegt bei den Industriestaaten deutlich höher als bei Entwicklungsländern. So lag der Verbrauch in den USA 2003 bei 26,0 Barrel pro Einwohner, in Deutschland bei 11,7, während in China statistisch auf jeden Einwohner 1,7 Barrel kamen, in Indien 0,8 und in Bangladesch nur 0,2 Barrel pro Kopf verbraucht wurden.

Hauptausfuhrstaaten sind Russland, Norwegen, Großbritannien und der OPEC-Staat Libyen.


Deutschland

Deutschland importierte im Jahr 2004 110,14 Millionen Tonnen Rohöl.
Die Importe von Erdöl und Erdgas nach Deutschland sind im Jahr 2006 nach vorläufigen Ergebnissen wertmäßig um mehr als ein Viertel (+28,4 %) gegenüber dem Vorjahr 2005 gestiegen.
Nach Mitteilung des Statistischen Bundesamtes wurden im Jahr 2006 Erdöl und Erdgas im Wert von 67,8 Milliarden Euro eingeführt. Gemessen nach Werten waren damit 9,3 % der gesamten Importe nach Deutschland Erdöl und Erdgas.

Der wichtigste Erdöl- und Erdgaslieferant für Deutschland war 2006 mit einem Drittel (33,2 %) der Rohstoffimporte im Wert von 22,5 Milliarden Euro Russland. Es folgte Norwegen, dessen Erdöl- und Erdgaslieferungen in Höhe von 16,3 Milliarden Euro einem knappen Viertel (24,0 %) der wertmäßigen Importe entsprachen. Das drittwichtigste Lieferland für Deutschland ist das Vereinigtes Königreich mit Lieferungen im Wert von 7,2 Milliarden Euro, die einen Anteil von 10,6 % an den gesamten deutschen Erdöl- und Erdgasimporten ausmachten. Der Anteil des aus deutschen Quellen gewonnenen Erdöls liegt bei etwa 3 % des Verbrauches, die ergiebigste Quelle ist dabei das Fördergebiet Mittelplate.


Transport

Erdöl wird weltweit über weite Entfernungen transportiert. Der Transport von den Förderstätten zu den Verbrauchern geschieht auf dem Seeweg mit Öltankern, über Land überwiegend mittels Pipeline|Rohrleitungen.


Folgen

Im Laufe der vergangenen Jahrzehnte haben die Ölförderung und ihre Begleiterscheinungen in manchen Entwicklungsland erhebliche wirtschaftliche, soziale und ökologische Probleme verursacht. Pipelines werden angezapft und ganze Tankschiffe beispielsweise in Nigeria von bewaffneten Gruppen entführt, um das gewonnene Gut (ca. 2,25 Mio. Barrel am Tag) gegen Waffen bei Hehlern zu verkaufen, da viele bewaffnete Gruppen des Nigerdelta sich von dem Staat oft verraten und vor allem von den größeren Mineralölkonzernen bestohlen und ausgebeutet fühlen. Dies führte unter anderem zur blinden Gewalt von Seiten des Staates, wobei eine ganze Kleinstadt dem Erdboden gleichgemacht wurde.
Shell (Konzern) sprach von 1000 Gewaltopfern jährlich, amnesty international dagegen von rund 500 Opfern allein in einer Woche.

Oft gelangt Öl in das Grundwasser o. a. Ebenso entstehen immense Schäden für das Ökosystem, wenn größere Mengen von Öl entzündet werden, da beispielsweise eine brennende Ölquelle oder evtl. sogar ein Ölfeld schwer zu löschen ist.
Auch Tankerunfälle, wie das der Exxon Valdez, können für die Umwelt sehr schädlich sein und ganze Sandstrände mit Teerklumpen verschmutzen oder mit einem schwarzen Ölteppich überziehen. Viele Tiere, vorrangig Vögel, denen das Öl das Gefieder verklebt und deren Nahrung verdirbt, verenden elendig. Es kommt auch vor, dass Öltanker auf dem Meer ihre Tanks mit Meerwasser ausspülen, einerseits zur Reinigung, andererseits, weil sie bestimmte Mengen an Wasser aus Stabilitätsgründen als Ballast geladen haben müssen.

Erdöl ist ein Fossiler Energieträger. Die intensive Verbrennung von Ölprodukten trägt durch den Treibhauseffekt des freigesetzten Kohlendioxids zur globalen Erwärmung bei.


siehe auch:


Literatur

  • Colin J. Campbell: Ölwechsel! Dt. Taschenbuch-Verl., Januar 2007. ISBN 3-42334-389-3.
  • F. William Engdahl: Mit der Ölwaffe zur Weltmacht. Der Weg zur neuen Weltordnung. Kopp, Rottenburg N 2005. ISBN 3-93851-619-4 (vgl. [1]).
  • Thomas Gold: Biosphäre der heißen Tiefe. Ed. Steinherz, Wiesbaden 2000. ISBN 3-98073-780-2.
  • Wolfgang Gründinger: Die Energiefalle. Ein Rückblick auf das Erdölzeitalter. C.H. Beck, München 2006. ISBN 3-40654-098-8.
  • Richard Heinberg: The Party's Over. Das Ende der Ölvorräte und die Zukunft der industrialisierten Welt. Riemann, München 2004. ISBN 3-57050-059-4.
  • Robert H. Motzkuhn: Der Kampf um das Öl. Hohenrain-Verlag, Tübingen 2005. ISBN 3-89180-077-0.
  • Rudolf Rechsteiner: Grün gewinnt. Orell Füssli, Zürich 2003. ISBN 3-28005-054-5 (PDF).
  • Matthew R. Simmons: Wenn der Wüste das Öl ausgeht. Der kommende Ölschock in Saudi-Arabien. Finanzbuch-Verlag. Dez.2006 ISBN 3898792277.
  • Daniel Yergin: Der Preis. Die Jagd nach Öl, Geld und Macht. S. Fischer, Frankfurt 1991. ISBN 3-10095-804-7.
  • Autorenkollektiv: Das Öl. in: Imperialismus. Bd 3. Gesellschaft für Druck und Verlag Wissenschaftlicher Literatur, München 1981, S. 169–194. ISBN 3-92293-501-X.
  • Autorenkollektiv: Zur politischen Ökonomie des Erdöls – Ein strategisches Gut und sein Preis. in: GegenStandpunkt. München 1.1992,1.


Museen in Deutschland



zurück zur Hauptseite




Dieser Artikel basiert auf dem Artikel Erdöl aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Bilder können unter abweichenden Lizenzen stehen. Der Urheber und die jeweilige Lizenz werden nach einem Klick auf ein Bild angezeigt.