Elektrizität

Aus Brand-Feuer.de
Zur Navigation springenZur Suche springen
vermutlich ein technischer Defekt führte zu diesem Brand in dem Kabelverteilerkasten.
Foto: FF Markranstädt
Warnung Elektrischer Strom / Hochspannung.
Auf Sicherheitsabstand wird hingewiesen.
Foto: Rainer Schwarz
Anzeige in Volt; gesehen in einer Fabrik in Hemer
Foto: Rainer Schwarz
Dachlandschaft 2019
Stromzuleitungen auf dem Dach. Hoffentlich gegen Blitzschlag gut geerdet.
Foto: Rainer Schwarz
Volt und Ampere.
Foto: Rainer Schwarz
ein Strommesser um die Jahrhundertwende.
Foto: Rainer Schwarz

Elektrizität (griechisch ēlektron) ist der Oberbegriff für alle Phänomene, die ihre Ursache entweder in ruhender elektrischer Ladung oder bewegter Ladung (Elektrischer Strom|Ströme) sowie deren Elektrisches Feld|elektrischen und Magnetisches Feld|magnetischen Feldern haben. Mittels Elektrizität wird elektrische Energie Wandler|gewandelt. Die Träger der elektrischen Ladung sind negativ geladene Elektronen und Anionen und positiv geladene Protonen und Kationen. Gleichnamige Ladungen stoßen sich ab, ungleichnamige Ladungen ziehen einander an. Die Kraft, die auf Ladungen gleichen Vorzeichens wirkt, wird als Abstoßung bezeichnet, die Kraft auf Ladungen mit entgegengesetzten Vorzeichen als Anziehung. Wegen der Wechselwirkungskräfte kommt der Elektrizität auch eine Bedeutung als Energieträger zu. Elektrische Ladungen sind die Quellen des elektrischen Feldes, bewegte Ladungen die Ursache für magnetische Felder.
Elektromagnetische Wellen (wie z. B. Licht) sind Erregungen des elektromagnetischen Feldes und können sich nach Entstehung unabhängig von Ladungsträgern im Raum (als Photonen) ausbreiten, d. h. fortbewegen, sie wechselwirken aber auch mit Materie.

Bewegung elektrischer Ladung findet in elektrischen Leitern durch Bewegung freier Elektronen und in Flüssigkeiten durch Ionenbewegung statt. Bei den Festkörperphysik|Festkörpern unterscheidet man zwischen Leiter (Physik)|Leitern, Nichtleitern und Halbleiter]]n.


Elektrische Phänomene in der Natur

Das wohl bekannteste und spektakulärste natürliche Auftreten von Elektrizität ist der Blitz. Mit einem Blitz entladen sich hohe, durch Reibung in den Gewitterwolken aufgebaute elektrostatische Ladungen (Reibungselektrizität). Im Verlauf einer solchen Entladung werden sowohl positive wie auch negative Ladungen bewegt.

Aber Elektrizität tritt auch in weniger spektakulärer Form auf. So beruht z. B. die Informationsverarbeitung im Nervensystem von Lebewesen zum Teil auf elektrischen Signalen.

Verschiedene Fische (z. B. der Zitterrochen und der Zitteraal) können hohe elektrische Spannungen aufbauen, um sich damit zu verteidigen bzw. ihre Beute zu lähmen. Umgekehrt gelingt es ihnen durch Wahrnehmung elektrischer Signale, die durch die Muskelbewegungen der Fische ausgelöst werden, ihre Beute zu orten.


Elektrizität im Alltag

Strom, Spannung und Zeit miteinander multipliziert ergibt die elektrische Energie: . Elektrizität ist von vorhandener elektrischer Energie abhängig, wobei die Auswirkungen von Elektrizität mit steigender Energie ebenfalls steigen können:

  • Piezoelektrische Feuerzeugzünder erzeugen sehr hohe Spannungen (~2000 V), sind jedoch wegen der geringen Stromstärke und der geringen Zeit des Stromflusses nahezu unschädlich.
  • Eine Autobatterie liefert eine geringe Spannung von 12 V. Sie kann sehr hohe Ströme um 100 A nur dann erzeugen, wenn der Belastungswiderstand sehr klein ist. Der menschliche Körper hat zu großen Widerstand.
  • Die Steckdose liefert 230 V und bis zu 16 A, und das über beliebig lange Zeit. Im Zusammenwirken kann das lebensgefährlich sein.

Im heutigen Alltag ist Elektrizität im Sinne von elektrischer Energie unentbehrlich, was dem Menschen meistens erst durch Ausfälle von Versorgungsnetzen wieder bewusst wird. Die Erzeugung dieses Energieträgers erfolgt fast immer in Kraftwerken, die Verteilung erfolgt flächendeckend durch Unternehmen der Energieversorgung. Seit über einem Jahrhundert bestimmen Anwendungen von Elektrizität, wie Licht, Wärme und Kraft mehr und mehr das menschliche Leben. Eine ständig wachsende Bedeutung erlangt heute elektrische Energie in der Kommunikations- und Informationstechnologie.

Elektrizität hat je nach Stärke unterschiedliche Auswirkungen auf den menschlichen Körper. Entscheidend für die Auswirkung ist die Stärke der Durchströmung in der Maßeinheit A (Ampere) und die Zeitdauer des Stromflusses. Geringe Durchströmungen werden beispielsweise zur Förderung von Heilungsprozessen in der Elektrotherapie eingesetzt oder als Impulsgeber für das Herz (Herzschrittmacher). Starke Durchströmungen ab ca. 30 mA können gefährlich sein und tödlich wirken. Die Elektroschockpistole beispielsweise gibt mehrfach starke elektrische Impulse an das Opfer ab und verursacht schmerzhafte, nicht kontrollierbare Muskelkontraktionen. Bei empfindlichen Personen können Atemlähmungen und Herzstillstand auftreten. Derartige Durchströmungen werden auch eingesetzt, um Menschen gezielt zu töten, wie dieses auch mit dem elektrischen Stuhl geschieht.

Elektroantriebe werden im Alltag in den unterschiedlichsten Gebieten eingesetzt. Ob im Lüfter eines Computers, zum Kühlen des Motors im Auto oder zum Herunterlassen der Jalousien und Rollläden im Haus. Ihren Einsatzgebieten sind keine Grenzen gesetzt.


Behandlung in den Naturwissenschaften

Die verschiedenen Phänomene der Elektrizität sind Betrachtungsgegenstände in Teilen der Physik und der Chemie:


Behandlung in den Ingenieurwissenschaften

Die Elektrotechnik bezeichnet denjenigen Bereich der Ingenieurwissenschaft und Technik, der sich mit allen Aspekten der Elektrizität befasst. Hierzu gehören die elektrische Energieerzeugung, die Energieübertragung sowie alle Arten ihrer Nutzung. Dieses reicht von den elektrisch betriebenen Maschinen über alle Arten elektrischer Schaltungen für die Steuer-, Mess-, Regelungs- und Computertechnik bis hin zur Nachrichtentechnik und Automatisierungstechnik.


Elektrische Energie

Die elektrische Energie (W) berechnet sich als das Produkt aus elektrischer Spannung (U), Stromstärke (I) und Zeitdauer (t).


Gewinnung elektrischer Energie

(Siehe dazu eigenständigen Artikel Stromerzeugung). Bei der Gewinnung oder auch Erzeugung elektrischer Energie werden verschiedene der oben beschriebenen Phänomene genutzt, die nachfolgend entsprechend ihrer Bedeutung geordnet sind:

Der weitaus größte Anteil (mehr als 99,9%) des weltweiten (elektrischen) Energiebedarfs wird durch Generatoren in Kraftwerken erzeugt. Dabei kommen unterschiedliche Energiequellen wie Kohle oder Uran zum Einsatz. Die verwendeten Generatoren sind vom Grundprinzip her identisch. Sie nutzen die elektrodynamische Induktion zur Ladungstrennung und damit zur Spannungserzeugung.

In Batterien, Akkumulatoren und Brennstoffzellen wird elektrische Energie aus chemischen Reaktionen gewonnen.

Die vergleichsweise junge Technologie der Photovoltaik nutzt mit Solarzellen den photoelektrischen Effekt.

Im magnetohydrodynamischen Generator (MHD-Generator) wird schnell strömendes ionisiertes Gas aus einem Verbrennungsprozess durch ein transversales Magnetfeld in positive und negative Teilchen getrennt (Lorentzkraft) und durch Elektroden aufgefangen.

Zwei exotische Methoden:

In Thermoelektrischen Generatoren (z. B. Isotopenbatterien) wird elektrische Energie mit Thermoelementen direkt aus Wärmeenergie gewonnen.

Im Thermoionischen Generator emittiert eine heiße Metallfläche durch Glühemission Elektronen im Vakuum, die von einer Elektrode in geringem Abstand aufgefangen werden.


Transport elektrischer Energie

Der Transport elektrischer Energie geschieht in den meisten Fällen durch die Bewegung von Elektronen in Festkörpern. Es werden dazu Leitungen aus Materialien mit einem geringen spezifischen Widerstand (meistens Metalle) verwendet. Kupfer und Silber gehören zu den besten Leitern, teilweise wird auch Aluminium wegen des geringeren Gewichtes verwendet. Durch den elektrischen Widerstand der Leitungen entstehen Leitungsverluste (Energieverluste) die umso höher sind, je höher die Stromstärke und je länger und dünner die Transportleitung ist. Bei höheren Spannungen kann die gleiche Energiemenge bei geringeren Stromstärken mit dünneren Drähten übertragen werden.

Die unvermeidbaren Verluste beim Transport können durch Verwendung von hohen Spannungen reduziert werden. Elektrische Hochspannungsleitungen werden z. B. mit Wechselspannungen im Bereich von 10 kV bis 380 kV betrieben. Zur Veränderung von Wechselspannungen werden Netztransformatoren eingesetzt. Da die Energie, die häufig in Kraftwerken erzeugt wird, teilweise recht weit von den Verbrauchern erzeugt wird, hat der Energietransport einen großen Einfluss auf den Wirkungsgrad des Gesamtsystems.

In Festkörpern können sich nur die negativ geladenen Elektronen bewegen, die positiv geladenen Atomrümpfe verharren an ihren Plätzen. Die Erwärmung einer Leitung bewirkt einen höheren Widerstand, da die Atomrümpfe des leitenden Materials in Schwingungen geraten und die Bewegung der Elektronen behindert. Bei so genannten Supraleitern werden die elektrischen Leiter auf sehr niedrige Temperaturen gebracht, wodurch der Restwiderstand auf 0 Ohm sinkt. Dann kann der Strom ungehindert fließen.


Bedeutung

Die große Bedeutung der elektrischen Energie liegt darin, dass sie mit außerordentlich geringem Gefahrenpotential im Vergleich mit anderen Energieträgern wie Erdgas transportiert und verwendet werden kann. So sind beispielsweise "Gassteckdosen" für gelegentliche Verbraucher sowohl in Industriebetrieben als auch Privathäusern unvorstellbar.

Es gibt keine andere Energieart, die sich so einfach, vielfältig und verlustarm in andere Energiearten wie mechanische Arbeit, Wärme, Licht oder Schall umwandeln lässt. Ein ungelöstes Problem ist die Speicherung großer Mengen elektrischer Energie. Das funktioniert bisher nur über verlustbehaftete Umwege wie beispielsweise Pumpspeicherkraftwerke oder chemische Umwandlungen in Akkumulatoren, das auch nur in geringen Mengen (siehe Energiespeicher).


Historische Daten

  • Schon in der Antike war den alten Griechen bereits die elektrostatische Aufladung des Bernsteins bekannt, der von ihnen als elektron bezeichnet wurde. Diese Erkenntnis wird Thales von Milet zugeschrieben.
  • 1. Jahrhundert v. Chr: Ein parthisches Tongefäß aus der Nähe von Bagdad, das 1936 von Dr. Wilhelm König gefunden wurde, enthält einen Eisenstab und einen Kupferzylinder, der mit Asphalt abgedichtet war. Versuche des Roemer- und Pelizaeus-Museums in Hildesheim zeigten, dass mit dieser Anordnung und Traubensaft als Elektrolyt eine Spannung von 0,5 V erreicht werden konnte. Sie könnte zum galvanischen Vergolden verwendet worden sein.


Physikalische Größen


Die kleinste elektrische Ladung ist die Elementarladung e (Naturkonstante), die Ladung eines Elektrons. Sie beträgt ca. 1,602 · 10 -19 C. Die nicht frei beobachtbaren Quarks haben noch kleinere, drittelzahlige Ladungen von.
    • Ladungsdichte
      • Linienladungsdichte [λ] in C/m
      • Flächenladungsdichte [σ] in C/m²
      • Raumladungsdichte [ρ] in C/m³



Ein Ampere ist die Stärke eines konstanten Stromes, der durch zwei parallele, geradlinige, unendlich lange und im Vakuum im Abstand von einem Meter voneinander angeordnete Leiter von vernachlässigbar kleinem, kreisförmigem Querschnitt fließend, zwischen diesen Leitern pro Meter Leiterlänge die Kraft von 2 · 10 −7 Newton hervorruft.






  • Im Gleichstromkreis:


  • Im Wechselstromkreis:
  • Blindleistung in var (von Volt-Ampère-réactif)



    • Wirkarbeit in kWh (Kilowattstunde), Wh (Wattstunde), Ws oder Joule
    • Blindarbeit in Vars; Varh oder kVarh
    • Scheinarbeit in VAs; VAh oder kVAh





Literatur

  • Adolf J. Schwab: Elektroenergiesysteme - Erzeugung, Transport, Übertragung und Verteilung elektrischer Energie. Springer Verlag, Heidelberg 2006, ISBN 3-540-29664-6.


Siehe auch:


Weblinks



oder zur Hauptseite




Dieser Artikel basiert auf dem Artikel Elektrizität aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Bilder können unter abweichenden Lizenzen stehen. Der Urheber und die jeweilige Lizenz werden nach einem Klick auf ein Bild angezeigt.